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ABSTRACT 

The boundary layer flow of an unsteady MHD free convection heat and mass transfer flow of a viscous  

incompressible and electrically conducting Casson fluid over an oscillating vertical plate with Newtonian 

heating on the wall under the effects of chemical reaction and thermal radiation has been investigated in 

this chapter.. Casson fluid model is used to characterize the fluid behavior. The magnetic Reynolds number 

is considered to be so small that the induced magnetic field can be neglected. Exact solution of the 

governing equations is obtained in closed form by Laplace transform technique. The effects of the pertinent 

flow parameters on velocity, temperature and concentration field are presented graphically and discussed 

here . 

Keywords:  skin friction, magnetic field, heat transfer, mass transfer, porous medium . 

 1 .INTRODUCTION 

The analysis of boundary layer flow of viscous and non-Newtonian fluids has been the focus of 

extensive research by various scientists due to its importance in continuous casting, paper production, glass 

blowing, aerodynamic extrusion of plastic sheet, polymer extrusion and several others. Convective heat 

transfer plays an important role during the handling and processing of non-Newtonian fluid flows. 

Mechanics of non-Newtonian fluid flows present a special challenge to engineers, physicists, and 

mathematicians. Because of the complexity of these fluids, there is not a single constitutive equation which 

exhibits all properties of such non-Newtonian fluids. In the process, a number of non-Newtonian fluid 

models have been proposed. These simple fluid models have the shortcomings that render results that are 

not in accordance with the fluid flows in realityThe model predicts shear thinning and shear thickening 

behavior.  

The second grade fluid model is the simplest subclass of viscoelastic fluids for which one can 

reasonably hope to obtain the analytic solution. Normal stress effects can be expressed in second grade 

fluid model, a special type of Rivlin–Ericksen fluids, but this model is incapable of representing shear 

thinning/thickening behavior (Aksoy et al. (2007)). The non-Newtonian fluids are mainly classified into 

three types, namely differential, rate, and integral. The simplest subclass of the rate type fluids is the 

Maxwell model which can predict the stress relaxation. This rheological model, also, excludes the 

complicated effects of shear dependent viscosity from any boundary layer analysis (Hayat et al. (2011)). 

There is another type of non-Newtonian fluid known as Casson fluid. Casson fluid exhibits yield stress. It 

is well known that Casson fluid is a shear thinning liquid which is assumed to have an infinite viscosity at 

zero rate of shear, a yield stress below which no flow occurs, and a zero viscosity at an infinite rate of 

shear, i.e., if a shear stress less than the yield stress is applied to the fluid, it behaves like a solid, whereas if 

a shear stress greater than yield stress is applied, it starts to move. In all these studies mentioned above, the 

Newtonian heating condition was neglected at the boundary..  
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2 .Mathematical Analysis  :Let us consider the unsteady MHD natural convection flow with heat 

and mass transfer of a viscous, incompressible, electrically conducting, thermalradiative and chemically 

reactive Casson fluid over an oscillating vertical plate with Newtonian  

heating on the wall. Coordinate system is chosen in such a way that x -axis is considered along the plate in 

upward direction and y -axis normal to plane of the plate in the fluid. Initially i.e., at time t 0  , both the 

fluid and plate are at rest and are maintained at a uniform temperature T . Also species concentration at the 

surface of the plate as well as at every point within the fluid is maintained at uniform concentration C . At 

time t 0  , the plate starts oscillation in its plane ( 0y  ) with velocity   ˆcos ,V UH t ti where the 

constant U is the amplitude of the plate oscillations, H(t) is the unit step function, î  is the unit vector in the 

vertical flow direction and ω is the frequency of the oscillation of the plate. The species concentration at 

the surface of the plate is raised to uniform species concentration
wC  and is maintained thereafter. 

Geometry of the problem is presented in Fig1. Since plate is of infinite extent in x and z directions and is 

electrically non-conducting, all physical quantities except pressure depend on y and tonly. Also no 

applied or polarized voltages exist so the effect of polarization of  

 

 

 

 

 

 

 

 

    

 

                                  Fig.1: Geometry of the Problem 

fluid is negligible. This corresponds to the case where no energy is added or extracted from the fluid by 

electrical means (1973). It is assumed that the induced magnetic field generated by fluid motion is 

negligible in comparison to the applied one. This assumption is justified because magnetic Reynolds 

number is very small for liquid metals and partially ionized fluids which are commonly used in industrial 

applications (1973). According to Newtonian heating, the heat transfer from the surface to the fluid is 

directly proportional to the T. In view of the above assumptions and taking into account the rheological 

equation for an incompressible and isotropic Casson fluid represented by Casson(1959) is 

*

0     

Equivalently, 

𝑢=𝐻(
𝑡) 𝑈𝑐𝑜𝑠

( 𝜔𝑡) ,𝜕
𝑇 𝜕𝑦=−

ℎ 𝑠𝑇,𝐶
=𝐶 𝑤 

y

x

Momentum Boundary Layer 

Thermal Boundary Layer 

g

o

     , , , , ,u t T t C t     

http://www.ijsrem.com/


            International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 09 | Sept -2020                                                                                                      ISSN: 2582-3930                                 

 

© 2020, IJSREM      | www.ijsrem.com Page 3 

 

y

B ij c

ij

y

B ij c

c

p
2 e ,

2

p
2 e ,

2

  
      

 
             

 

where 
0, ,   and *  are, respectively shear stress, Casson yield stress, dynamic viscosity and shear rate 

and ij ije e  and ije is the (i, j)th component of deformation rate, π is the product of component of 
deformation rate with itself, 

c is a critical value of this product based on the non-Newtonian model, 
B is 

the plastic dynamic viscosity of the non-Newtonian fluid, and yp denote the yield stress of the fluid. 

 Keeping in view the assumptions made above, governing equations for the fully developed 

hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, 

viscous,incompressible, thermal radiative and chemically reactive Casson fluid over an oscillating vertical 

plate with Newtonian heating on the wall are 

Conservation of momentum: 

   
2

2

u 1 u
1 g T T g C C

t y
 

                     
     (2.1) 

Conservation of energy: 

2

r

2

qT k T 1

t Cp Cp yy

   
 

    
        (2.2) 

Conservation of species concentration: 

 
2

2

C C
D Kr C C

t y


       
  

        (2.3) 

Initial and boundary conditions for the fluid flow problem are given below: 

u 0,T T ,C C        for all y and t 0        (2.4a) 

    s w

T
u UH t cos t , h T ,C C

y

        


at y 0   for t 0     (2.4b) 

u 0,T T ,C C        as y    for t 0       (2.4c) 

where
p ru ,g, , , , , k,C , , ,D,T ,C ,Kr ,q           and s

h are, respectively, the fluid velocity in the x -
direction, acceleration due to gravity, Casson fluid parameter, the fluid density, the volumetric coefficient 

of thermal expansion, the volumetric coefficient of expansion for concentration, thermal conductivity, 

specific heat at constant pressure, electrical conductivity, the kinematic viscosity, the coefficient of mass 

diffusivity, the temperature of the fluid, species concentration, chemical reaction parameter, radiative heat 

flux vector,  and heat transfer coefficient. 
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For an optically thick fluid, in addition to emission there is also self absorption and usually the absorption 

co-efficient is wavelength dependent and large so we can adopt the Rosseland approximation for radiative 

heat flux vector rq  . Thus rq  is given by 

4

1
r

1

4 T
q

3k y

   


         (2.5) 

where
1k is Rosseland mean absorption co-efficient and

1 is Stefan-Boltzmann constant. 

We assume that the temperature differences within the flow is sufficiently small, then equation (2.5) 

can be linearized by expanding 4T into Taylor’s series about the free stream temperature T
 and neglecting 

second and higher order terms in  T T  . This results of the following approximations: 

4 3 4T 4T T 3T               (2.6) 

From (2.5) and (2.6) we have 

32 4 2

r 1 1

2 2

1 1

q 4 16 TT T

y 3k y 3k y


     
   

    
       (2.7) 

Thus the energy equation (2.3) reduces to 

32 2

1

2 2

p 1 p

16 TT k T T

t C y 3k C y

    
 

      
       (2.8) 

In order to reduce the governing equations (2.1), (2.3) and (2.8), into non-dimensional form, the following 

dimensionless variables and parameters are introduced. 
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3
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where Gr,Gm,Pr,Sc,Kr,  and N are, respectively, the thermal Grashof number, the solutalGrashof number, 

the Prandtl number, the Schmidt number, the chemical reaction parameter, Newtonian heating parameter 

and radiation parameter. 

Equation (2.1), (2.3) and (2.8) reduces to 

2

2

u 1 u
1 GrT GmC

t y

         
       (2.9) 

 
2
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T T
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t y
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2

2

C 1 C
KrC

t Sc y

 
 

 
         (2.11) 

The corresponding initial and boundary conditions in non-dimensional form become: 

u 0, 0, 0     for all y and t 0        (2.12a) 

     T
u H t cos t , 1 T ,C 1

y


     


at y 0 for t 0     (2.12b) 

u 0,T 0,C 0   as y  for t 0       (2.12c) 

Here sh

U


  is the Newtonian heating parameter. We note that the equation (2.12b) gives T=0 when 

0,  which physically means that no heating from the plate exists when 0.   

3 .Method of Solutions: 

The set of equations (2.9), (2.10) and (2.11) subject to the initial and boundary conditions (2.12a)-(2.12c) 

were solved analytically using Laplace transforms. The exact solutions for fluid velocity  u y, t , fluid 

temperature  T y, t and species concentration  C y, t are obtained and expressed in the following form: 

   
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     (3.1) 
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   (3.2) 
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 (3.3) 

Note that the solution given by (3.1) is valid for 1Pr
eff

a . The solution for 1Pr
eff

a , can be easily 

obtained by substituting 1Pr
eff

a into equation (2.10) and follow the same procedure as discussed above. 

4.SKIN-FRICTION, THE RATE OF HEAT TRANSFER AND THE RATE OF MASS TRANSFER: 

Skin Friction: 

The expression for the skin friction at the plate for Casson fluid, is defined as 
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a t
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         (4.1) 

Nusselt Number: 

The Nusselt number Nu, which measures the rate of heat transfer at the plate for Casson fluid is defined as 

   
y 0

T 1
Nu 1

U T T y T 0, t 

   
              

   

  2
2

2 eff
a t

2

1
a Pr 1

e 1 erf a t 1

 
     
 

      (4.2) 

Sherwood Number: 

The Sherwood number Sh, which measures the rate of mass transfer at the plate, is given by 
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   
y 0

C Sc
Sh ScKrerf Krt exp Krt

y t

 
       

    (4.3) 

Results and Discussions: 

In order to get the physical understand of the problem and for the purpose of analyzing the effect of Casson 

parameter (α), Newtonian heating parameter (γ), thermal Grashof number (Gr), solutalGrashof number 

(Gm), Prandtl number (Pr), thermal radiation parameter (N), Schmidt number (Sc), chemical reaction 

parameter (Kr) and time (t) on the flow field, numerical values of the fluid velocity, fluid temperature and 

species concentration in the boundary layer region were computed and are displayed graphically versus 

boundary layer co-ordinate y in Figs 2-17. During the course of numerical calculations of the fluid velocity, 

the temperature and the species concentration, the values of the Prandtl number are chosen for air at 25o C 

and one atmospheric pressure (Pr=0.71), Mercury (Pr=0.025), electrolytic solution (Pr=1.0) and water 

(Pr=7.0). To focus our attention on numerical values of the results obtained in the study, the values of Sc 

are chosen for the gases representing diffusing chemical species of most common interest in air, namely, 

hydrogen (Sc=0.22), water-vapour (Sc=0.60) and ammonia (Sc=0.78). To examine the effect of parameters 

related to the problem on the velocity field, the skin friction numerical computation are carried out at 

Pr=0.71 and Sc=0.22. 

 Figs.2-.3 depicts the influence of thermal and concentration buoyancy forces on fluid velocity. It is 

perceived from Figs.2-3 that the fluid velocity increases close to the boundary of the wall with increasing 

values of Gr but it has reverse effect after attaining certain values of y whereas, it decreases on increasing 

value of Gm throughout the boundary layer region. Gr represents the relative strength of thermal buoyancy 

force to viscous force and Gm represents the relative strength of concentration buoyancy force to viscous 

force. Therefore, Gr decreases on decreasing the strengths of thermal buoyancy force whereas Gm 

decreases on decreasing the strength of concentration buoyancy force. In this problem, natural convection 

flow induced due to thermal and concentration buoyancy forces; therefore, thermal and concentration 

buoyancy force tends to decelerate the fluid velocity throughut the boundary layer region which is clearly 

evident from Figs.2-.3. 

 Effect of Casson parameter α on velocity profile is clearly exhibited in Fig.4. It is observed that 

initially (near the wall), the fluid velocity increases (before the crossing over point) but away from the wall 

(after crossing over point), it decreases with increasing α. Overshoot of fluid velocity indicates that the 
velocity is maximum close to the surface but not at the surface. The effect of increasing values of α is to 
increase the fluid velocity near the wall, and hence the boundary layer thickness increases near the wall. 

The increasing values of the Casson parameter i.e., the decreasing yield stress (the fluid behaves as 

Newtonian fluid as Casson parameter becomes large i.e., for
1

, 0 


) increases the velocity field.  

 For different values of conjugate parameter for Newtonian heating γ, the velocity profiles are plotted 

in Fig..5. It is observed that initially (near the wall), the fluid velocity increases (before the crossing over 

point) but away from the wall (after crossing over point), it decreases with increasing γ. An increase in 
conjugate parameter for Newtonian heating may reduce the fluid density and increases the momentum 

boundary layer thickness, as a result, the velocity increases within the boundary layer.  

 The effect of chemical reaction Kr and thermal radiation N are shown in Figs. 6-7 respectively. From 

Fig.6 it is quite clear that increasing the chemical reaction parameter tends to decrease the velocity of the 

fluid. This means that, the chemical reaction decelerates the fluid motion. Consequently, less flow is 

induced along the plate resulting in decrease in the fluid velocity in the boundary layer. It should be 

mentioned here that physically positive values of Kr implies destructive reaction and negative values of Kr 
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implies generative reaction. We studied the case of a destructive chemical reaction (Kr). From Fig.7 it is 

observed that the fluid velocity increases with an increase in thermal radiation parameter. Physically, the 

higher radiation occurs when temperature is higher and hence velocity raises.  

 The influence of Schmidt number (Sc) on the fluid velocity and concentration profiles are depicted in 

Figs. 8 and.9 respectively. It is noticed from Figs.8 and .9 that, fluid velocity and concentration profiles 

decreases on increasing the values of Sc. The Schmidt number embodies the ratio of the momentum to the 

mass diffusivity. The Schmidt number therefore quantifies the relative effectiveness of momentum to mass 

transport by diffusion in the hydrodynamic (velocity) and concentration (species) boundary layers. As the 

Schmidt number increases the concentration decreases. This cause the concentration buoyancy effects to 

decrease yielding a reduction in the fluid velocity. The reductions in the velocity and concentration profiles 

are accompanied by simultaneous reductions in the velocity and concentration boundary layers. These 

behaviors are clear from Figs.8 and 9. 

 Fig. 10 shows that fluid velocity  ,u y t  decreases on increasing time t. This implies that, there is a 

reduction in fluid velocity with the progress of time throughout the thermal boundary layer region. 

 The velocity for different phase angle ωt is presented in Fig.11. The velocity is decreasing with 

increasing phase angle. The velocity close to the wall is maximum and decreasing with increasing distance 

from the wall, eventually tends to zero as y  . It is also clearly seen from this figure, that the velocity 

satisfies the given boundary conditions (2.12b) which provide a useful mathematical check on our calculi. 

 The influence of Prandtl number (Pr) on the fluid temperature is depicted in Fig. 12. It is evident 

from Fig. 12 that, fluid temperature θ decreases on increasing Pr. An increase in Prandtl number reduces 

the thermal boundary layer thickness. Prandtl number signifies the ratio of momentum diffusivity to 

thermal diffusivity. It can be noticed that as Pr decreases, the thickness of the thermal boundary layer 

becomes greater than the thickness of the velocity boundary layer according to the well-known relation 

1 PrT   where T  the thickness of the thermal boundary layer and   the thickness of the velocity 

boundary layer, so the thickness of the thermal boundary layer increases as Prandtl number decreases and 

hence temperature profile decreases with increase in Prandtl number. In heat transfer problems, the Prandtl 

number controls the relative thickening of momentum and thermal boundary layers. When Prandtl number 

is small, it means that heat diffuses quickly compared to the velocity (momentum), which means that for 

liquid metals, the thickness of the thermal boundary layer is much bigger than the momentum boundary 

layer. Hence Prandtl number can be used to increase the rate of cooling in conducting flows. 

 Fig. 13 illustrates the influence of thermal radiation N on fluid temperature. It is evident from Fig. 13 

that, the fluid temperature T increases on increasing N. This implies that thermal radiation tends to enhance 

the fluid temperature throughout the boundary layer region. 

 From Fig. 14 it is observed that an increase in the conjugate parameter for Newtonian heating 

increases the thermal boundary layer thickness and as a result the surface temperature of the plate 

increases. It is also observed that there is a sharp rise in temperature with the increase of conjugate 

parameter. 

 Figs.15 and 16 illustrate the influence of time on fluid temperature and species concentration 

respectively. It is evident from Figs. 15 and 16 that, fluid temperature and species concentration are getting 

accelerated with the progress of time throughout the boundary layer region. Also it may be noted that, 

unabated mass diffusion into the fluid stream, the molar concentration of the mixture rises with increasing 

time and so there is an enhancement in species concentration with the progress of time throughout the 

boundary layer region. 
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 Fig.17 shows the influence of a chemical reaction on concentration profiles. In this study, we are 

analyzing the effects of a destructive chemical reaction (Kr>0). It is noticed that concentration distributions 

decrease when the chemical reaction increase. Physically, for a destructive case, chemical reaction takes 

place with many disturbances. This, in turn, causes high molecular motion, which results in an increase in 

the transport phenomenon, thereby reducing the concentration distributions in the fluid flow.  

                                        FIGURES 

 

Fig.2: Velocity u against y for Gm=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, N=1, α=0.5, t=0.7. 

 

Fig 3: Velocity u against y for Gr=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, N=1, α=0.5, t=0.7. 
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Fig.4: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, N=1, t=0.7. 

 

Fig.5: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, Sc=0.22, N=1, α=0.5, t=0.7. 

http://www.ijsrem.com/


            International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 09 | Sept -2020                                                                                                      ISSN: 2582-3930                                 

 

© 2020, IJSREM      | www.ijsrem.com Page 11 

 

 

Fig.6: Velocity u against y for Gr=5, Gm=5, Pr=0.71, Sc=0.22, γ=0.5, N=1, α=0.5, t=0.7. 

 

Fig.7: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, α=0.5, t=0.7. 
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Fig.8: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, γ=0.5, N=1, α=0.5, t=0.7. 

 

Fig..9: Concentration C against y for Kr=1, t=0.7. 
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Fig.10: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, N=1, α=0.5. 

 

Fig.11: Velocity u against y for Gr=5, Gm=5, Kr=1, Pr=0.71, Sc=0.22, γ=0.5, N=1, α=0.5, t=0.7. 
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Fig.12: Temperature T against y for γ=0.5, N=1, t=0.7. 

 

Fig.13: Temperature T against y for Pr=0.71, γ=0.5, t=0.7. 
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Fig.14: Temperature T against y for Pr=0.71, N=1, t=0.7. 

 

Fig.15: Temperature T against y for Pr=0.71, γ=0.5, N=1. 
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Fig.16: Concentration C against y for Sc=0.22, Kr=1. 

 

Fig.17: Concentration C against y for Sc=0.22, t=0.7. 
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